MakeItFrom.com
Menu (ESC)

6110A Aluminum vs. EN 1.7233 Steel

6110A aluminum belongs to the aluminum alloys classification, while EN 1.7233 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110A aluminum and the bottom bar is EN 1.7233 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 11 to 18
18 to 23
Fatigue Strength, MPa 140 to 210
270 to 530
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 220 to 280
450 to 590
Tensile Strength: Ultimate (UTS), MPa 360 to 470
700 to 960
Tensile Strength: Yield (Proof), MPa 250 to 430
380 to 780

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 190
430
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.0
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.4
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1170
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 58
110 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 1300
380 to 1630
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 36 to 47
25 to 34
Strength to Weight: Bending, points 41 to 48
22 to 28
Thermal Diffusivity, mm2/s 65
11
Thermal Shock Resistance, points 16 to 21
21 to 28

Alloy Composition

Aluminum (Al), % 94.8 to 98
0
Carbon (C), % 0
0.39 to 0.45
Chromium (Cr), % 0.050 to 0.25
1.2 to 1.5
Copper (Cu), % 0.3 to 0.8
0
Iron (Fe), % 0 to 0.5
96.2 to 97.5
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0.3 to 0.9
0.4 to 0.7
Molybdenum (Mo), % 0
0.5 to 0.7
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.7 to 1.1
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0