MakeItFrom.com
Menu (ESC)

6110A Aluminum vs. EN 2.4878 Nickel

6110A aluminum belongs to the aluminum alloys classification, while EN 2.4878 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110A aluminum and the bottom bar is EN 2.4878 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 11 to 18
13 to 17
Fatigue Strength, MPa 140 to 210
400 to 410
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
78
Shear Strength, MPa 220 to 280
750 to 760
Tensile Strength: Ultimate (UTS), MPa 360 to 470
1210 to 1250
Tensile Strength: Yield (Proof), MPa 250 to 430
740 to 780

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 190
1030
Melting Completion (Liquidus), °C 650
1370
Melting Onset (Solidus), °C 600
1320
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 160
11
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 8.4
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 58
150 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 1300
1370 to 1540
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 36 to 47
41 to 42
Strength to Weight: Bending, points 41 to 48
31
Thermal Diffusivity, mm2/s 65
2.8
Thermal Shock Resistance, points 16 to 21
37 to 39

Alloy Composition

Aluminum (Al), % 94.8 to 98
1.2 to 1.6
Boron (B), % 0
0.010 to 0.015
Carbon (C), % 0
0.030 to 0.070
Chromium (Cr), % 0.050 to 0.25
23 to 25
Cobalt (Co), % 0
19 to 21
Copper (Cu), % 0.3 to 0.8
0 to 0.2
Iron (Fe), % 0 to 0.5
0 to 1.0
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0.3 to 0.9
0 to 0.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
43.6 to 52.2
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0.7 to 1.1
0 to 0.5
Sulfur (S), % 0
0 to 0.0070
Tantalum (Ta), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.2
2.8 to 3.2
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.2
0.030 to 0.070
Residuals, % 0 to 0.15
0

Comparable Variants