MakeItFrom.com
Menu (ESC)

6110A Aluminum vs. EN AC-43100 Aluminum

Both 6110A aluminum and EN AC-43100 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6110A aluminum and the bottom bar is EN AC-43100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 11 to 18
1.1 to 2.5
Fatigue Strength, MPa 140 to 210
68 to 76
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 360 to 470
180 to 270
Tensile Strength: Yield (Proof), MPa 250 to 430
97 to 230

Thermal Properties

Latent Heat of Fusion, J/g 410
540
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 650
600
Melting Onset (Solidus), °C 600
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 160
140
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
37
Electrical Conductivity: Equal Weight (Specific), % IACS 140
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.6
Embodied Carbon, kg CO2/kg material 8.4
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 58
2.9 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 1300
66 to 360
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
54
Strength to Weight: Axial, points 36 to 47
20 to 29
Strength to Weight: Bending, points 41 to 48
28 to 36
Thermal Diffusivity, mm2/s 65
60
Thermal Shock Resistance, points 16 to 21
8.6 to 12

Alloy Composition

Aluminum (Al), % 94.8 to 98
86.9 to 90.8
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0.3 to 0.8
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 0.55
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.7 to 1.1
0.2 to 0.45
Manganese (Mn), % 0.3 to 0.9
0 to 0.45
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0.7 to 1.1
9.0 to 11
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.2
0 to 0.15
Zinc (Zn), % 0 to 0.2
0 to 0.1
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.15

Comparable Variants