MakeItFrom.com
Menu (ESC)

6110A Aluminum vs. EN AC-48100 Aluminum

Both 6110A aluminum and EN AC-48100 aluminum are aluminum alloys. They have 79% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6110A aluminum and the bottom bar is EN AC-48100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
76
Elongation at Break, % 11 to 18
1.1
Fatigue Strength, MPa 140 to 210
120 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
29
Tensile Strength: Ultimate (UTS), MPa 360 to 470
240 to 330
Tensile Strength: Yield (Proof), MPa 250 to 430
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 410
640
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 650
580
Melting Onset (Solidus), °C 600
470
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 160
130
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
27
Electrical Conductivity: Equal Weight (Specific), % IACS 140
87

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.8
2.8
Embodied Carbon, kg CO2/kg material 8.4
7.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1170
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 58
2.3 to 3.6
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 1300
250 to 580
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 36 to 47
24 to 33
Strength to Weight: Bending, points 41 to 48
31 to 38
Thermal Diffusivity, mm2/s 65
55
Thermal Shock Resistance, points 16 to 21
11 to 16

Alloy Composition

Aluminum (Al), % 94.8 to 98
72.1 to 79.8
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0.3 to 0.8
4.0 to 5.0
Iron (Fe), % 0 to 0.5
0 to 1.3
Magnesium (Mg), % 0.7 to 1.1
0.25 to 0.65
Manganese (Mn), % 0.3 to 0.9
0 to 0.5
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0.7 to 1.1
16 to 18
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.2
0 to 1.5
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.25

Comparable Variants