MakeItFrom.com
Menu (ESC)

6110A Aluminum vs. R31537 Cobalt

6110A aluminum belongs to the aluminum alloys classification, while R31537 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110A aluminum and the bottom bar is R31537 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 11 to 18
14 to 23
Fatigue Strength, MPa 140 to 210
310 to 480
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
87
Tensile Strength: Ultimate (UTS), MPa 360 to 470
1000 to 1340
Tensile Strength: Yield (Proof), MPa 250 to 430
590 to 940

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Melting Completion (Liquidus), °C 650
1360
Melting Onset (Solidus), °C 600
1290
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 160
13
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.1

Otherwise Unclassified Properties

Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 8.4
8.1
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1170
530

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 58
140 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 1300
780 to 1990
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 36 to 47
33 to 44
Strength to Weight: Bending, points 41 to 48
26 to 32
Thermal Diffusivity, mm2/s 65
3.4
Thermal Shock Resistance, points 16 to 21
24 to 32

Alloy Composition

Aluminum (Al), % 94.8 to 98
0
Carbon (C), % 0
0 to 0.14
Chromium (Cr), % 0.050 to 0.25
26 to 30
Cobalt (Co), % 0
58.9 to 69
Copper (Cu), % 0.3 to 0.8
0
Iron (Fe), % 0 to 0.5
0 to 0.75
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0.3 to 0.9
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 7.0
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0
0 to 0.25
Silicon (Si), % 0.7 to 1.1
0 to 1.0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0