MakeItFrom.com
Menu (ESC)

6110A Aluminum vs. C69700 Brass

6110A aluminum belongs to the aluminum alloys classification, while C69700 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110A aluminum and the bottom bar is C69700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 11 to 18
25
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
41
Shear Strength, MPa 220 to 280
300
Tensile Strength: Ultimate (UTS), MPa 360 to 470
470
Tensile Strength: Yield (Proof), MPa 250 to 430
230

Thermal Properties

Latent Heat of Fusion, J/g 410
240
Maximum Temperature: Mechanical, °C 190
160
Melting Completion (Liquidus), °C 650
930
Melting Onset (Solidus), °C 600
880
Specific Heat Capacity, J/kg-K 900
400
Thermal Conductivity, W/m-K 160
43
Thermal Expansion, µm/m-K 23
19

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 8.4
2.7
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 58
99
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 1300
250
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 36 to 47
16
Strength to Weight: Bending, points 41 to 48
16
Thermal Diffusivity, mm2/s 65
13
Thermal Shock Resistance, points 16 to 21
16

Alloy Composition

Aluminum (Al), % 94.8 to 98
0
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0.3 to 0.8
75 to 80
Iron (Fe), % 0 to 0.5
0 to 0.2
Lead (Pb), % 0
0.5 to 1.5
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0.3 to 0.9
0 to 0.4
Silicon (Si), % 0.7 to 1.1
2.5 to 3.5
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
13.9 to 22
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.5