MakeItFrom.com
Menu (ESC)

6110A Aluminum vs. C72900 Copper-nickel

6110A aluminum belongs to the aluminum alloys classification, while C72900 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110A aluminum and the bottom bar is C72900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 11 to 18
6.0 to 20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
45
Shear Strength, MPa 220 to 280
540 to 630
Tensile Strength: Ultimate (UTS), MPa 360 to 470
870 to 1080
Tensile Strength: Yield (Proof), MPa 250 to 430
700 to 920

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 190
210
Melting Completion (Liquidus), °C 650
1120
Melting Onset (Solidus), °C 600
950
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 160
29
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
39
Density, g/cm3 2.8
8.8
Embodied Carbon, kg CO2/kg material 8.4
4.6
Embodied Energy, MJ/kg 150
72
Embodied Water, L/kg 1170
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 58
49 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 1300
2030 to 3490
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 36 to 47
27 to 34
Strength to Weight: Bending, points 41 to 48
23 to 27
Thermal Diffusivity, mm2/s 65
8.6
Thermal Shock Resistance, points 16 to 21
31 to 38

Alloy Composition

Aluminum (Al), % 94.8 to 98
0
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0.3 to 0.8
74.1 to 78
Iron (Fe), % 0 to 0.5
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0.7 to 1.1
0 to 0.15
Manganese (Mn), % 0.3 to 0.9
0 to 0.3
Nickel (Ni), % 0
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Silicon (Si), % 0.7 to 1.1
0
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0 to 0.5
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.3