MakeItFrom.com
Menu (ESC)

6110A Aluminum vs. C82000 Copper

6110A aluminum belongs to the aluminum alloys classification, while C82000 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110A aluminum and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 11 to 18
8.0 to 20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
45
Tensile Strength: Ultimate (UTS), MPa 360 to 470
350 to 690
Tensile Strength: Yield (Proof), MPa 250 to 430
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 410
220
Maximum Temperature: Mechanical, °C 190
220
Melting Completion (Liquidus), °C 650
1090
Melting Onset (Solidus), °C 600
970
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 160
260
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
45
Electrical Conductivity: Equal Weight (Specific), % IACS 140
46

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.8
8.9
Embodied Carbon, kg CO2/kg material 8.4
5.0
Embodied Energy, MJ/kg 150
77
Embodied Water, L/kg 1170
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 58
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 1300
80 to 1120
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 36 to 47
11 to 22
Strength to Weight: Bending, points 41 to 48
12 to 20
Thermal Diffusivity, mm2/s 65
76
Thermal Shock Resistance, points 16 to 21
12 to 24

Alloy Composition

Aluminum (Al), % 94.8 to 98
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Chromium (Cr), % 0.050 to 0.25
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 0.3 to 0.8
95.2 to 97.4
Iron (Fe), % 0 to 0.5
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0.3 to 0.9
0
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0.7 to 1.1
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0 to 0.1
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.5