MakeItFrom.com
Menu (ESC)

6110A Aluminum vs. C95400 Bronze

6110A aluminum belongs to the aluminum alloys classification, while C95400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110A aluminum and the bottom bar is C95400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 11 to 18
8.1 to 16
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 360 to 470
600 to 710
Tensile Strength: Yield (Proof), MPa 250 to 430
240 to 360

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 190
230
Melting Completion (Liquidus), °C 650
1040
Melting Onset (Solidus), °C 600
1030
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 160
59
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
13
Electrical Conductivity: Equal Weight (Specific), % IACS 140
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
27
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 8.4
3.2
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1170
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 58
48 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 1300
250 to 560
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 36 to 47
20 to 24
Strength to Weight: Bending, points 41 to 48
19 to 22
Thermal Diffusivity, mm2/s 65
16
Thermal Shock Resistance, points 16 to 21
21 to 25

Alloy Composition

Aluminum (Al), % 94.8 to 98
10 to 11.5
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0.3 to 0.8
83 to 87
Iron (Fe), % 0 to 0.5
3.0 to 5.0
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0.3 to 0.9
0 to 0.5
Nickel (Ni), % 0
0 to 1.5
Silicon (Si), % 0.7 to 1.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.5