MakeItFrom.com
Menu (ESC)

6110A Aluminum vs. N06007 Nickel

6110A aluminum belongs to the aluminum alloys classification, while N06007 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110A aluminum and the bottom bar is N06007 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 11 to 18
38
Fatigue Strength, MPa 140 to 210
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
79
Shear Strength, MPa 220 to 280
470
Tensile Strength: Ultimate (UTS), MPa 360 to 470
690
Tensile Strength: Yield (Proof), MPa 250 to 430
260

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 190
990
Melting Completion (Liquidus), °C 650
1340
Melting Onset (Solidus), °C 600
1260
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 160
10
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 8.4
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1170
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 58
200
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 1300
170
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 36 to 47
23
Strength to Weight: Bending, points 41 to 48
21
Thermal Diffusivity, mm2/s 65
2.7
Thermal Shock Resistance, points 16 to 21
18

Alloy Composition

Aluminum (Al), % 94.8 to 98
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.050 to 0.25
21 to 23.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0.3 to 0.8
1.5 to 2.5
Iron (Fe), % 0 to 0.5
18 to 21
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0.3 to 0.9
1.0 to 2.0
Molybdenum (Mo), % 0
5.5 to 7.5
Nickel (Ni), % 0
36.1 to 51.1
Niobium (Nb), % 0
1.8 to 2.5
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.7 to 1.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0