MakeItFrom.com
Menu (ESC)

6110A Aluminum vs. N08024 Nickel

6110A aluminum belongs to the aluminum alloys classification, while N08024 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6110A aluminum and the bottom bar is N08024 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 11 to 18
34
Fatigue Strength, MPa 140 to 210
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 220 to 280
410
Tensile Strength: Ultimate (UTS), MPa 360 to 470
620
Tensile Strength: Yield (Proof), MPa 250 to 430
270

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 190
990
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 600
1380
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 160
12
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
41
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 8.4
7.2
Embodied Energy, MJ/kg 150
99
Embodied Water, L/kg 1170
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 58
170
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 1300
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 36 to 47
21
Strength to Weight: Bending, points 41 to 48
20
Thermal Diffusivity, mm2/s 65
3.2
Thermal Shock Resistance, points 16 to 21
15

Alloy Composition

Aluminum (Al), % 94.8 to 98
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.050 to 0.25
22.5 to 25
Copper (Cu), % 0.3 to 0.8
0.5 to 1.5
Iron (Fe), % 0 to 0.5
26.6 to 38.4
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0.3 to 0.9
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 0
35 to 40
Niobium (Nb), % 0
0.15 to 0.35
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.7 to 1.1
0 to 0.5
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0