MakeItFrom.com
Menu (ESC)

6151 Aluminum vs. 308.0 Aluminum

Both 6151 aluminum and 308.0 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6151 aluminum and the bottom bar is 308.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
73
Elongation at Break, % 1.1 to 5.7
2.0
Fatigue Strength, MPa 80 to 100
89
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 190 to 200
150
Tensile Strength: Ultimate (UTS), MPa 330 to 340
190
Tensile Strength: Yield (Proof), MPa 270 to 280
110

Thermal Properties

Latent Heat of Fusion, J/g 410
470
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
620
Melting Onset (Solidus), °C 590
540
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 170
140
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
37
Electrical Conductivity: Equal Weight (Specific), % IACS 150
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 8.2
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 18
3.3
Resilience: Unit (Modulus of Resilience), kJ/m3 520 to 580
83
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
47
Strength to Weight: Axial, points 34
18
Strength to Weight: Bending, points 39
25
Thermal Diffusivity, mm2/s 70
55
Thermal Shock Resistance, points 15
9.2

Alloy Composition

Aluminum (Al), % 95.6 to 98.8
85.7 to 91
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.35
4.0 to 5.0
Iron (Fe), % 0 to 1.0
0 to 1.0
Magnesium (Mg), % 0.45 to 0.8
0 to 0.1
Manganese (Mn), % 0 to 0.2
0 to 0.5
Silicon (Si), % 0.6 to 1.2
5.0 to 6.0
Titanium (Ti), % 0 to 0.15
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 1.0
Residuals, % 0
0 to 0.5