MakeItFrom.com
Menu (ESC)

6151 Aluminum vs. 413.0 Aluminum

Both 6151 aluminum and 413.0 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6151 aluminum and the bottom bar is 413.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
73
Elongation at Break, % 1.1 to 5.7
2.5
Fatigue Strength, MPa 80 to 100
130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Shear Strength, MPa 190 to 200
170
Tensile Strength: Ultimate (UTS), MPa 330 to 340
270
Tensile Strength: Yield (Proof), MPa 270 to 280
140

Thermal Properties

Latent Heat of Fusion, J/g 410
570
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
590
Melting Onset (Solidus), °C 590
580
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 170
140
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
35
Electrical Conductivity: Equal Weight (Specific), % IACS 150
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.2
7.6
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 18
5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 520 to 580
130
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 50
53
Strength to Weight: Axial, points 34
29
Strength to Weight: Bending, points 39
36
Thermal Diffusivity, mm2/s 70
59
Thermal Shock Resistance, points 15
13

Alloy Composition

Aluminum (Al), % 95.6 to 98.8
82.2 to 89
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.35
0 to 1.0
Iron (Fe), % 0 to 1.0
0 to 2.0
Magnesium (Mg), % 0.45 to 0.8
0 to 0.1
Manganese (Mn), % 0 to 0.2
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0.6 to 1.2
11 to 13
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 0.5
Residuals, % 0
0 to 0.25