MakeItFrom.com
Menu (ESC)

6151 Aluminum vs. ASTM A182 Grade F122

6151 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F122 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6151 aluminum and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 1.1 to 5.7
23
Fatigue Strength, MPa 80 to 100
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 190 to 200
450
Tensile Strength: Ultimate (UTS), MPa 330 to 340
710
Tensile Strength: Yield (Proof), MPa 270 to 280
450

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 650
1490
Melting Onset (Solidus), °C 590
1440
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 170
24
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
10
Electrical Conductivity: Equal Weight (Specific), % IACS 150
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.2
3.0
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1180
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 18
140
Resilience: Unit (Modulus of Resilience), kJ/m3 520 to 580
520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 34
25
Strength to Weight: Bending, points 39
22
Thermal Diffusivity, mm2/s 70
6.4
Thermal Shock Resistance, points 15
19

Alloy Composition

Aluminum (Al), % 95.6 to 98.8
0 to 0.020
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.070 to 0.14
Chromium (Cr), % 0.15 to 0.35
10 to 11.5
Copper (Cu), % 0 to 0.35
0.3 to 1.7
Iron (Fe), % 0 to 1.0
81.3 to 87.7
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.2
0 to 0.7
Molybdenum (Mo), % 0
0.25 to 0.6
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0
0.040 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.6 to 1.2
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.15
0