MakeItFrom.com
Menu (ESC)

6151 Aluminum vs. ASTM A387 Grade 21L Class 1

6151 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 21L class 1 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6151 aluminum and the bottom bar is ASTM A387 grade 21L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 1.1 to 5.7
21
Fatigue Strength, MPa 80 to 100
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 190 to 200
310
Tensile Strength: Ultimate (UTS), MPa 330 to 340
500
Tensile Strength: Yield (Proof), MPa 270 to 280
230

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Maximum Temperature: Mechanical, °C 170
480
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 590
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 170
41
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 150
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.1
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.2
1.8
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1180
62

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 18
84
Resilience: Unit (Modulus of Resilience), kJ/m3 520 to 580
140
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 34
18
Strength to Weight: Bending, points 39
18
Thermal Diffusivity, mm2/s 70
11
Thermal Shock Resistance, points 15
14

Alloy Composition

Aluminum (Al), % 95.6 to 98.8
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.15 to 0.35
2.8 to 3.3
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 0 to 1.0
94.4 to 96.1
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.2
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.6 to 1.2
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0