MakeItFrom.com
Menu (ESC)

6151 Aluminum vs. Grade CX2MW Nickel

6151 aluminum belongs to the aluminum alloys classification, while grade CX2MW nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6151 aluminum and the bottom bar is grade CX2MW nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
220
Elongation at Break, % 1.1 to 5.7
34
Fatigue Strength, MPa 80 to 100
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
84
Tensile Strength: Ultimate (UTS), MPa 330 to 340
620
Tensile Strength: Yield (Proof), MPa 270 to 280
350

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 650
1550
Melting Onset (Solidus), °C 590
1490
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 170
10
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 150
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
65
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.2
12
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1180
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 18
180
Resilience: Unit (Modulus of Resilience), kJ/m3 520 to 580
290
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 34
19
Strength to Weight: Bending, points 39
18
Thermal Diffusivity, mm2/s 70
2.7
Thermal Shock Resistance, points 15
17

Alloy Composition

Aluminum (Al), % 95.6 to 98.8
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0.15 to 0.35
20 to 22.5
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 0 to 1.0
2.0 to 6.0
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
12.5 to 14.5
Nickel (Ni), % 0
51.3 to 63
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.6 to 1.2
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
2.5 to 3.5
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0