MakeItFrom.com
Menu (ESC)

6151 Aluminum vs. C95800 Bronze

6151 aluminum belongs to the aluminum alloys classification, while C95800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6151 aluminum and the bottom bar is C95800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 1.1 to 5.7
22
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Tensile Strength: Ultimate (UTS), MPa 330 to 340
660
Tensile Strength: Yield (Proof), MPa 270 to 280
270

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 170
230
Melting Completion (Liquidus), °C 650
1060
Melting Onset (Solidus), °C 590
1040
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 170
36
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 150
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.2
3.4
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1180
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 18
110
Resilience: Unit (Modulus of Resilience), kJ/m3 520 to 580
310
Stiffness to Weight: Axial, points 14
7.9
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 34
22
Strength to Weight: Bending, points 39
20
Thermal Diffusivity, mm2/s 70
9.9
Thermal Shock Resistance, points 15
23

Alloy Composition

Aluminum (Al), % 95.6 to 98.8
8.5 to 9.5
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.35
79 to 83.2
Iron (Fe), % 0 to 1.0
3.5 to 4.5
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.2
0.8 to 1.5
Nickel (Ni), % 0
4.0 to 5.0
Silicon (Si), % 0.6 to 1.2
0 to 0.1
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.5