MakeItFrom.com
Menu (ESC)

6151 Aluminum vs. S21460 Stainless Steel

6151 aluminum belongs to the aluminum alloys classification, while S21460 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6151 aluminum and the bottom bar is S21460 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 1.1 to 5.7
46
Fatigue Strength, MPa 80 to 100
390
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 190 to 200
580
Tensile Strength: Ultimate (UTS), MPa 330 to 340
830
Tensile Strength: Yield (Proof), MPa 270 to 280
430

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 170
920
Melting Completion (Liquidus), °C 650
1380
Melting Onset (Solidus), °C 590
1330
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 23
18

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 8.2
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1180
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 18
320
Resilience: Unit (Modulus of Resilience), kJ/m3 520 to 580
460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 34
30
Strength to Weight: Bending, points 39
26
Thermal Shock Resistance, points 15
17

Alloy Composition

Aluminum (Al), % 95.6 to 98.8
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0.15 to 0.35
17 to 19
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 0 to 1.0
57.3 to 63.7
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.2
14 to 16
Nickel (Ni), % 0
5.0 to 6.0
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0.6 to 1.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0