MakeItFrom.com
Menu (ESC)

6151 Aluminum vs. S32760 Stainless Steel

6151 aluminum belongs to the aluminum alloys classification, while S32760 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6151 aluminum and the bottom bar is S32760 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 1.1 to 5.7
28
Fatigue Strength, MPa 80 to 100
450
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Shear Strength, MPa 190 to 200
550
Tensile Strength: Ultimate (UTS), MPa 330 to 340
850
Tensile Strength: Yield (Proof), MPa 270 to 280
620

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 590
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 170
15
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 150
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.2
4.1
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1180
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 18
220
Resilience: Unit (Modulus of Resilience), kJ/m3 520 to 580
930
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 34
30
Strength to Weight: Bending, points 39
25
Thermal Diffusivity, mm2/s 70
4.0
Thermal Shock Resistance, points 15
23

Alloy Composition

Aluminum (Al), % 95.6 to 98.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.15 to 0.35
24 to 26
Copper (Cu), % 0 to 0.35
0.5 to 1.0
Iron (Fe), % 0 to 1.0
57.6 to 65.8
Magnesium (Mg), % 0.45 to 0.8
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.6 to 1.2
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
0.5 to 1.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0