MakeItFrom.com
Menu (ESC)

6162 Aluminum vs. ACI-ASTM CB30 Steel

6162 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CB30 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6162 aluminum and the bottom bar is ACI-ASTM CB30 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 290 to 300
500
Tensile Strength: Yield (Proof), MPa 260 to 270
230

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 160
940
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 620
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 190
21
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 170
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.3
Embodied Energy, MJ/kg 150
33
Embodied Water, L/kg 1180
130

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 510 to 550
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 29 to 30
18
Strength to Weight: Bending, points 36
18
Thermal Diffusivity, mm2/s 79
5.6
Thermal Shock Resistance, points 13
17

Alloy Composition

Aluminum (Al), % 96.7 to 98.9
0
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0 to 0.1
18 to 21
Copper (Cu), % 0 to 0.2
0 to 1.2
Iron (Fe), % 0 to 0.5
72.9 to 82
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0