MakeItFrom.com
Menu (ESC)

6162 Aluminum vs. ACI-ASTM CE8MN Steel

6162 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CE8MN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6162 aluminum and the bottom bar is ACI-ASTM CE8MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 6.7 to 9.1
29
Fatigue Strength, MPa 100 to 130
370
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 290 to 300
750
Tensile Strength: Yield (Proof), MPa 260 to 270
500

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 620
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 190
16
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 170
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
21
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
4.2
Embodied Energy, MJ/kg 150
58
Embodied Water, L/kg 1180
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 26
190
Resilience: Unit (Modulus of Resilience), kJ/m3 510 to 550
620
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 29 to 30
27
Strength to Weight: Bending, points 36
23
Thermal Diffusivity, mm2/s 79
4.2
Thermal Shock Resistance, points 13
21

Alloy Composition

Aluminum (Al), % 96.7 to 98.9
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
22.5 to 25.5
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.5
56 to 66.4
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.5
Nickel (Ni), % 0
8.0 to 11
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0