MakeItFrom.com
Menu (ESC)

6162 Aluminum vs. Grade 365 Molybdenum

6162 aluminum belongs to the aluminum alloys classification, while grade 365 molybdenum belongs to the otherwise unclassified metals. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6162 aluminum and the bottom bar is grade 365 molybdenum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
310
Elongation at Break, % 6.7 to 9.1
6.3
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
120
Tensile Strength: Ultimate (UTS), MPa 290 to 300
620
Tensile Strength: Yield (Proof), MPa 260 to 270
530

Thermal Properties

Latent Heat of Fusion, J/g 400
370
Specific Heat Capacity, J/kg-K 900
250
Thermal Expansion, µm/m-K 23
7.0

Otherwise Unclassified Properties

Density, g/cm3 2.7
10
Embodied Carbon, kg CO2/kg material 8.3
28
Embodied Energy, MJ/kg 150
330
Embodied Water, L/kg 1180
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 26
37
Resilience: Unit (Modulus of Resilience), kJ/m3 510 to 550
450
Stiffness to Weight: Axial, points 14
17
Stiffness to Weight: Bending, points 50
22
Strength to Weight: Axial, points 29 to 30
17
Strength to Weight: Bending, points 36
16
Thermal Shock Resistance, points 13
21

Alloy Composition

Aluminum (Al), % 96.7 to 98.9
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.5
0 to 0.010
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0 to 0.1
0
Molybdenum (Mo), % 0
99.9 to 100
Nickel (Ni), % 0
0 to 0.0020
Nitrogen (N), % 0
0 to 0.0020
Oxygen (O), % 0
0 to 0.0015
Silicon (Si), % 0.4 to 0.8
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0