MakeItFrom.com
Menu (ESC)

6162 Aluminum vs. SAE-AISI S2 Steel

6162 aluminum belongs to the aluminum alloys classification, while SAE-AISI S2 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6162 aluminum and the bottom bar is SAE-AISI S2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 290 to 300
670 to 1940

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 620
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190
44
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 170
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.1
Embodied Energy, MJ/kg 150
30
Embodied Water, L/kg 1180
49

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 29 to 30
24 to 69
Strength to Weight: Bending, points 36
22 to 44
Thermal Diffusivity, mm2/s 79
12
Thermal Shock Resistance, points 13
23 to 68

Alloy Composition

Aluminum (Al), % 96.7 to 98.9
0
Carbon (C), % 0
0.4 to 0.55
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.2
0 to 0.25
Iron (Fe), % 0 to 0.5
96 to 98.1
Magnesium (Mg), % 0.7 to 1.1
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.5
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.4 to 0.8
0.9 to 1.2
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0 to 0.5
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0