MakeItFrom.com
Menu (ESC)

6182 Aluminum vs. EN 1.4438 Stainless Steel

6182 aluminum belongs to the aluminum alloys classification, while EN 1.4438 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6182 aluminum and the bottom bar is EN 1.4438 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 6.8 to 13
41
Fatigue Strength, MPa 63 to 99
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 140 to 190
420
Tensile Strength: Ultimate (UTS), MPa 230 to 320
620
Tensile Strength: Yield (Proof), MPa 130 to 270
250

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 190
1000
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 600
1400
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 160
14
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.4
4.4
Embodied Energy, MJ/kg 150
60
Embodied Water, L/kg 1170
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
200
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 520
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 23 to 32
22
Strength to Weight: Bending, points 30 to 38
20
Thermal Diffusivity, mm2/s 65
3.7
Thermal Shock Resistance, points 10 to 14
14

Alloy Composition

Aluminum (Al), % 95 to 97.9
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.25
17.5 to 19.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
57.3 to 66.5
Magnesium (Mg), % 0.7 to 1.2
0
Manganese (Mn), % 0.5 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
13 to 16
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.9 to 1.3
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.050 to 0.2
0
Residuals, % 0 to 0.15
0