MakeItFrom.com
Menu (ESC)

6182 Aluminum vs. EN AC-41000 Aluminum

Both 6182 aluminum and EN AC-41000 aluminum are aluminum alloys. They have a very high 99% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6182 aluminum and the bottom bar is EN AC-41000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
69
Elongation at Break, % 6.8 to 13
4.5
Fatigue Strength, MPa 63 to 99
58 to 71
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 230 to 320
170 to 280
Tensile Strength: Yield (Proof), MPa 130 to 270
80 to 210

Thermal Properties

Latent Heat of Fusion, J/g 410
420
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 600
630
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 160
170
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
38
Electrical Conductivity: Equal Weight (Specific), % IACS 130
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.4
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
6.4 to 11
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 520
46 to 300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 23 to 32
18 to 29
Strength to Weight: Bending, points 30 to 38
26 to 35
Thermal Diffusivity, mm2/s 65
69
Thermal Shock Resistance, points 10 to 14
7.8 to 13

Alloy Composition

Aluminum (Al), % 95 to 97.9
95.2 to 97.6
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 0.6
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.7 to 1.2
0.45 to 0.65
Manganese (Mn), % 0.5 to 1.0
0.3 to 0.5
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0.9 to 1.3
1.6 to 2.4
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0.050 to 0.2
Zinc (Zn), % 0 to 0.2
0 to 0.1
Zirconium (Zr), % 0.050 to 0.2
0
Residuals, % 0
0 to 0.15

Comparable Variants