MakeItFrom.com
Menu (ESC)

6182 Aluminum vs. Grade M30H Nickel

6182 aluminum belongs to the aluminum alloys classification, while grade M30H nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6182 aluminum and the bottom bar is grade M30H nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
160
Elongation at Break, % 6.8 to 13
11
Fatigue Strength, MPa 63 to 99
230
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
61
Tensile Strength: Ultimate (UTS), MPa 230 to 320
770
Tensile Strength: Yield (Proof), MPa 130 to 270
470

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 190
900
Melting Completion (Liquidus), °C 640
1250
Melting Onset (Solidus), °C 600
1200
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 160
22
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.7
8.6
Embodied Carbon, kg CO2/kg material 8.4
7.7
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1170
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
75
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 520
700
Stiffness to Weight: Axial, points 14
10
Stiffness to Weight: Bending, points 50
21
Strength to Weight: Axial, points 23 to 32
25
Strength to Weight: Bending, points 30 to 38
22
Thermal Diffusivity, mm2/s 65
5.7
Thermal Shock Resistance, points 10 to 14
27

Alloy Composition

Aluminum (Al), % 95 to 97.9
0
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.1
27 to 33
Iron (Fe), % 0 to 0.5
0 to 3.5
Magnesium (Mg), % 0.7 to 1.2
0
Manganese (Mn), % 0.5 to 1.0
0 to 1.5
Nickel (Ni), % 0
57.9 to 70.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.9 to 1.3
2.7 to 3.7
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.050 to 0.2
0
Residuals, % 0 to 0.15
0