MakeItFrom.com
Menu (ESC)

6182 Aluminum vs. C33000 Brass

6182 aluminum belongs to the aluminum alloys classification, while C33000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6182 aluminum and the bottom bar is C33000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 6.8 to 13
7.0 to 60
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Shear Strength, MPa 140 to 190
240 to 300
Tensile Strength: Ultimate (UTS), MPa 230 to 320
320 to 520
Tensile Strength: Yield (Proof), MPa 130 to 270
110 to 450

Thermal Properties

Latent Heat of Fusion, J/g 410
180
Maximum Temperature: Mechanical, °C 190
130
Melting Completion (Liquidus), °C 640
940
Melting Onset (Solidus), °C 600
900
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 160
120
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
26
Electrical Conductivity: Equal Weight (Specific), % IACS 130
29

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.4
2.7
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1170
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
35 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 520
60 to 950
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 23 to 32
11 to 18
Strength to Weight: Bending, points 30 to 38
13 to 18
Thermal Diffusivity, mm2/s 65
37
Thermal Shock Resistance, points 10 to 14
11 to 17

Alloy Composition

Aluminum (Al), % 95 to 97.9
0
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.1
65 to 68
Iron (Fe), % 0 to 0.5
0 to 0.070
Lead (Pb), % 0
0.25 to 0.7
Magnesium (Mg), % 0.7 to 1.2
0
Manganese (Mn), % 0.5 to 1.0
0
Silicon (Si), % 0.9 to 1.3
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
30.8 to 34.8
Zirconium (Zr), % 0.050 to 0.2
0
Residuals, % 0
0 to 0.4