MakeItFrom.com
Menu (ESC)

6182 Aluminum vs. C61500 Bronze

6182 aluminum belongs to the aluminum alloys classification, while C61500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6182 aluminum and the bottom bar is C61500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 6.8 to 13
3.0 to 55
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
42
Shear Strength, MPa 140 to 190
350 to 550
Tensile Strength: Ultimate (UTS), MPa 230 to 320
480 to 970
Tensile Strength: Yield (Proof), MPa 130 to 270
150 to 720

Thermal Properties

Latent Heat of Fusion, J/g 410
220
Maximum Temperature: Mechanical, °C 190
220
Melting Completion (Liquidus), °C 640
1040
Melting Onset (Solidus), °C 600
1030
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 160
58
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
13
Electrical Conductivity: Equal Weight (Specific), % IACS 130
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.4
3.2
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1170
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
27 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 520
100 to 2310
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 23 to 32
16 to 32
Strength to Weight: Bending, points 30 to 38
16 to 26
Thermal Diffusivity, mm2/s 65
16
Thermal Shock Resistance, points 10 to 14
17 to 34

Alloy Composition

Aluminum (Al), % 95 to 97.9
7.7 to 8.3
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.1
89 to 90.5
Iron (Fe), % 0 to 0.5
0
Lead (Pb), % 0
0 to 0.015
Magnesium (Mg), % 0.7 to 1.2
0
Manganese (Mn), % 0.5 to 1.0
0
Nickel (Ni), % 0
1.8 to 2.2
Silicon (Si), % 0.9 to 1.3
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.050 to 0.2
0
Residuals, % 0
0 to 0.5