MakeItFrom.com
Menu (ESC)

6182 Aluminum vs. C90500 Gun Metal

6182 aluminum belongs to the aluminum alloys classification, while C90500 gun metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6182 aluminum and the bottom bar is C90500 gun metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 6.8 to 13
20
Fatigue Strength, MPa 63 to 99
90
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 230 to 320
320
Tensile Strength: Yield (Proof), MPa 130 to 270
160

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
1000
Melting Onset (Solidus), °C 600
850
Specific Heat Capacity, J/kg-K 900
370
Thermal Conductivity, W/m-K 160
75
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
11
Electrical Conductivity: Equal Weight (Specific), % IACS 130
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
35
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.4
3.6
Embodied Energy, MJ/kg 150
59
Embodied Water, L/kg 1170
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
54
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 520
110
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 23 to 32
10
Strength to Weight: Bending, points 30 to 38
12
Thermal Diffusivity, mm2/s 65
23
Thermal Shock Resistance, points 10 to 14
12

Alloy Composition

Aluminum (Al), % 95 to 97.9
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.1
86 to 89
Iron (Fe), % 0 to 0.5
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 0.7 to 1.2
0
Manganese (Mn), % 0.5 to 1.0
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0.9 to 1.3
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
1.0 to 3.0
Zirconium (Zr), % 0.050 to 0.2
0
Residuals, % 0
0 to 0.3