MakeItFrom.com
Menu (ESC)

6182 Aluminum vs. S38815 Stainless Steel

6182 aluminum belongs to the aluminum alloys classification, while S38815 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6182 aluminum and the bottom bar is S38815 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 6.8 to 13
34
Fatigue Strength, MPa 63 to 99
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 140 to 190
410
Tensile Strength: Ultimate (UTS), MPa 230 to 320
610
Tensile Strength: Yield (Proof), MPa 130 to 270
290

Thermal Properties

Latent Heat of Fusion, J/g 410
370
Maximum Temperature: Mechanical, °C 190
860
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 600
1310
Specific Heat Capacity, J/kg-K 900
500
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.7
7.5
Embodied Carbon, kg CO2/kg material 8.4
3.8
Embodied Energy, MJ/kg 150
54
Embodied Water, L/kg 1170
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
170
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 520
220
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 23 to 32
22
Strength to Weight: Bending, points 30 to 38
21
Thermal Shock Resistance, points 10 to 14
15

Alloy Composition

Aluminum (Al), % 95 to 97.9
0 to 0.3
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.25
13 to 15
Copper (Cu), % 0 to 0.1
0.75 to 1.5
Iron (Fe), % 0 to 0.5
56.1 to 67
Magnesium (Mg), % 0.7 to 1.2
0
Manganese (Mn), % 0.5 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
13 to 17
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.9 to 1.3
5.5 to 6.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.050 to 0.2
0
Residuals, % 0 to 0.15
0