MakeItFrom.com
Menu (ESC)

6261 Aluminum vs. EN 1.4905 Stainless Steel

6261 aluminum belongs to the aluminum alloys classification, while EN 1.4905 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6261 aluminum and the bottom bar is EN 1.4905 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.0 to 16
19
Fatigue Strength, MPa 60 to 120
330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 90 to 180
460
Tensile Strength: Ultimate (UTS), MPa 150 to 300
740
Tensile Strength: Yield (Proof), MPa 100 to 260
510

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 160
660
Melting Completion (Liquidus), °C 640
1480
Melting Onset (Solidus), °C 610
1440
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 180
26
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 160
4.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1180
90

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 27
130
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 500
680
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 15 to 31
26
Strength to Weight: Bending, points 23 to 37
23
Thermal Diffusivity, mm2/s 75
7.0
Thermal Shock Resistance, points 6.5 to 13
25

Alloy Composition

Aluminum (Al), % 96.6 to 98.6
0 to 0.040
Boron (B), % 0
0.00050 to 0.0050
Carbon (C), % 0
0.090 to 0.13
Chromium (Cr), % 0 to 0.1
8.5 to 9.5
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.4
86.2 to 88.8
Magnesium (Mg), % 0.7 to 1.0
0
Manganese (Mn), % 0.2 to 0.35
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0.1 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.050 to 0.090
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.4 to 0.7
0.1 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
0.9 to 1.1
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0