MakeItFrom.com
Menu (ESC)

6261 Aluminum vs. Grade Ti-Pd18 Titanium

6261 aluminum belongs to the aluminum alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 6261 aluminum and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 9.0 to 16
17
Fatigue Strength, MPa 60 to 120
350
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 150 to 300
710
Tensile Strength: Yield (Proof), MPa 100 to 260
540

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 160
330
Melting Completion (Liquidus), °C 640
1640
Melting Onset (Solidus), °C 610
1590
Specific Heat Capacity, J/kg-K 900
550
Thermal Conductivity, W/m-K 180
8.2
Thermal Expansion, µm/m-K 23
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 160
2.7

Otherwise Unclassified Properties

Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.3
41
Embodied Energy, MJ/kg 150
670
Embodied Water, L/kg 1180
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 27
110
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 500
1380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 15 to 31
44
Strength to Weight: Bending, points 23 to 37
39
Thermal Diffusivity, mm2/s 75
3.3
Thermal Shock Resistance, points 6.5 to 13
52

Alloy Composition

Aluminum (Al), % 96.6 to 98.6
2.5 to 3.5
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.15 to 0.4
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.4
0 to 0.25
Magnesium (Mg), % 0.7 to 1.0
0
Manganese (Mn), % 0.2 to 0.35
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0.4 to 0.7
0
Titanium (Ti), % 0 to 0.1
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.4