MakeItFrom.com
Menu (ESC)

6261 Aluminum vs. SAE-AISI 1010 Steel

6261 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1010 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6261 aluminum and the bottom bar is SAE-AISI 1010 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.0 to 16
22 to 31
Fatigue Strength, MPa 60 to 120
150 to 230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 90 to 180
230 to 250
Tensile Strength: Ultimate (UTS), MPa 150 to 300
350 to 400
Tensile Strength: Yield (Proof), MPa 100 to 260
190 to 330

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 610
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 180
47
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48
12
Electrical Conductivity: Equal Weight (Specific), % IACS 160
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1180
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 27
82 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 500
100 to 290
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 15 to 31
12 to 14
Strength to Weight: Bending, points 23 to 37
14 to 15
Thermal Diffusivity, mm2/s 75
13
Thermal Shock Resistance, points 6.5 to 13
11 to 13

Alloy Composition

Aluminum (Al), % 96.6 to 98.6
0
Carbon (C), % 0
0.080 to 0.13
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.4
99.18 to 99.62
Magnesium (Mg), % 0.7 to 1.0
0
Manganese (Mn), % 0.2 to 0.35
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.7
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0