MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. 380.0 Aluminum

Both 6262 aluminum and 380.0 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is 380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
74
Elongation at Break, % 4.6 to 10
3.0
Fatigue Strength, MPa 90 to 110
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Shear Strength, MPa 170 to 240
190
Tensile Strength: Ultimate (UTS), MPa 290 to 390
320
Tensile Strength: Yield (Proof), MPa 270 to 360
160

Thermal Properties

Latent Heat of Fusion, J/g 400
510
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 650
590
Melting Onset (Solidus), °C 580
540
Specific Heat Capacity, J/kg-K 890
870
Thermal Conductivity, W/m-K 170
100
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
27
Electrical Conductivity: Equal Weight (Specific), % IACS 140
83

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.8
2.9
Embodied Carbon, kg CO2/kg material 8.3
7.5
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1190
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
8.0
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
48
Strength to Weight: Axial, points 29 to 39
31
Strength to Weight: Bending, points 35 to 42
36
Thermal Diffusivity, mm2/s 69
40
Thermal Shock Resistance, points 13 to 18
14

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
79.6 to 89.5
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0.040 to 0.14
0
Copper (Cu), % 0.15 to 0.4
3.0 to 4.0
Iron (Fe), % 0 to 0.7
0 to 2.0
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0 to 0.1
Manganese (Mn), % 0 to 0.15
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0.4 to 0.8
7.5 to 9.5
Tin (Sn), % 0
0 to 0.35
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 3.0
Residuals, % 0
0 to 0.5