MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. 514.0 Aluminum

Both 6262 aluminum and 514.0 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is 514.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 4.6 to 10
7.3
Fatigue Strength, MPa 90 to 110
48
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Shear Strength, MPa 170 to 240
140
Tensile Strength: Ultimate (UTS), MPa 290 to 390
180
Tensile Strength: Yield (Proof), MPa 270 to 360
74

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 580
610
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 170
140
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
35
Electrical Conductivity: Equal Weight (Specific), % IACS 140
120

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
11
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
41
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
51
Strength to Weight: Axial, points 29 to 39
19
Strength to Weight: Bending, points 35 to 42
26
Thermal Diffusivity, mm2/s 69
57
Thermal Shock Resistance, points 13 to 18
7.9

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
93.6 to 96.5
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0.040 to 0.14
0
Copper (Cu), % 0.15 to 0.4
0 to 0.15
Iron (Fe), % 0 to 0.7
0 to 0.5
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
3.5 to 4.5
Manganese (Mn), % 0 to 0.15
0 to 0.35
Silicon (Si), % 0.4 to 0.8
0 to 0.35
Titanium (Ti), % 0 to 0.15
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 0.15
Residuals, % 0
0 to 0.15