MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. 8090 Aluminum

Both 6262 aluminum and 8090 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is 8090 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
67
Elongation at Break, % 4.6 to 10
3.5 to 13
Fatigue Strength, MPa 90 to 110
91 to 140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Tensile Strength: Ultimate (UTS), MPa 290 to 390
340 to 490
Tensile Strength: Yield (Proof), MPa 270 to 360
210 to 420

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 160
190
Melting Completion (Liquidus), °C 650
660
Melting Onset (Solidus), °C 580
600
Specific Heat Capacity, J/kg-K 890
960
Thermal Conductivity, W/m-K 170
95 to 160
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
20
Electrical Conductivity: Equal Weight (Specific), % IACS 140
66

Otherwise Unclassified Properties

Base Metal Price, % relative 10
18
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.6
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1190
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
16 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
340 to 1330
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
50
Strength to Weight: Axial, points 29 to 39
34 to 49
Strength to Weight: Bending, points 35 to 42
39 to 50
Thermal Diffusivity, mm2/s 69
36 to 60
Thermal Shock Resistance, points 13 to 18
15 to 22

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
93 to 98.4
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0.040 to 0.14
0 to 0.1
Copper (Cu), % 0.15 to 0.4
1.0 to 1.6
Iron (Fe), % 0 to 0.7
0 to 0.3
Lead (Pb), % 0.4 to 0.7
0
Lithium (Li), % 0
2.2 to 2.7
Magnesium (Mg), % 0.8 to 1.2
0.6 to 1.3
Manganese (Mn), % 0 to 0.15
0 to 0.1
Silicon (Si), % 0.4 to 0.8
0 to 0.2
Titanium (Ti), % 0 to 0.15
0 to 0.1
Zinc (Zn), % 0 to 0.25
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.16
Residuals, % 0
0 to 0.15

Comparable Variants