MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. A357.0 Aluminum

Both 6262 aluminum and A357.0 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is A357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 4.6 to 10
3.7
Fatigue Strength, MPa 90 to 110
100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 170 to 240
240
Tensile Strength: Ultimate (UTS), MPa 290 to 390
350
Tensile Strength: Yield (Proof), MPa 270 to 360
270

Thermal Properties

Latent Heat of Fusion, J/g 400
500
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 650
610
Melting Onset (Solidus), °C 580
560
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 170
160
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
40
Electrical Conductivity: Equal Weight (Specific), % IACS 140
140

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 2.8
2.6
Embodied Carbon, kg CO2/kg material 8.3
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
12
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
520
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 48
53
Strength to Weight: Axial, points 29 to 39
38
Strength to Weight: Bending, points 35 to 42
43
Thermal Diffusivity, mm2/s 69
68
Thermal Shock Resistance, points 13 to 18
17

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
90.8 to 93
Beryllium (Be), % 0
0.040 to 0.070
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0.040 to 0.14
0
Copper (Cu), % 0.15 to 0.4
0 to 0.2
Iron (Fe), % 0 to 0.7
0 to 0.2
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0.4 to 0.7
Manganese (Mn), % 0 to 0.15
0 to 0.1
Silicon (Si), % 0.4 to 0.8
6.5 to 7.5
Titanium (Ti), % 0 to 0.15
0.040 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.1
Residuals, % 0
0 to 0.15