MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. ACI-ASTM CB7Cu-1 Steel

6262 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CB7Cu-1 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is ACI-ASTM CB7Cu-1 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.6 to 10
5.7 to 11
Fatigue Strength, MPa 90 to 110
420 to 590
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 290 to 390
960 to 1350
Tensile Strength: Yield (Proof), MPa 270 to 360
760 to 1180

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 580
1500
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
17
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
13
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.6
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1190
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
71 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
1500 to 3590
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 29 to 39
34 to 48
Strength to Weight: Bending, points 35 to 42
28 to 35
Thermal Diffusivity, mm2/s 69
4.6
Thermal Shock Resistance, points 13 to 18
32 to 45

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0.040 to 0.14
15.5 to 17.7
Copper (Cu), % 0.15 to 0.4
2.5 to 3.2
Iron (Fe), % 0 to 0.7
72.3 to 78.4
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 0.7
Nickel (Ni), % 0
3.6 to 4.6
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.4 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0