MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. ACI-ASTM CE30 Steel

6262 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CE30 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is ACI-ASTM CE30 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.6 to 10
11
Fatigue Strength, MPa 90 to 110
170
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 290 to 390
630
Tensile Strength: Yield (Proof), MPa 270 to 360
310

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 650
1410
Melting Onset (Solidus), °C 580
1360
Specific Heat Capacity, J/kg-K 890
490
Thermal Conductivity, W/m-K 170
14
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
19
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.3
3.4
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1190
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
59
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
240
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 29 to 39
23
Strength to Weight: Bending, points 35 to 42
21
Thermal Diffusivity, mm2/s 69
3.6
Thermal Shock Resistance, points 13 to 18
13

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0.040 to 0.14
26 to 30
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
55.1 to 66
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 1.5
Nickel (Ni), % 0
8.0 to 11
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0