MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. AISI 205 Stainless Steel

6262 aluminum belongs to the aluminum alloys classification, while AISI 205 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is AISI 205 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.6 to 10
11 to 51
Fatigue Strength, MPa 90 to 110
410 to 640
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 170 to 240
560 to 850
Tensile Strength: Ultimate (UTS), MPa 290 to 390
800 to 1430
Tensile Strength: Yield (Proof), MPa 270 to 360
450 to 1100

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 160
880
Melting Completion (Liquidus), °C 650
1380
Melting Onset (Solidus), °C 580
1340
Specific Heat Capacity, J/kg-K 890
480
Thermal Expansion, µm/m-K 23
18

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 2.8
7.6
Embodied Carbon, kg CO2/kg material 8.3
2.6
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1190
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
150 to 430
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
510 to 3060
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
26
Strength to Weight: Axial, points 29 to 39
29 to 52
Strength to Weight: Bending, points 35 to 42
25 to 37
Thermal Shock Resistance, points 13 to 18
16 to 29

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0.12 to 0.25
Chromium (Cr), % 0.040 to 0.14
16.5 to 18.5
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
62.6 to 68.1
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
14 to 15.5
Nickel (Ni), % 0
1.0 to 1.7
Nitrogen (N), % 0
0.32 to 0.4
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0.4 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0