MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. AISI 301 Stainless Steel

6262 aluminum belongs to the aluminum alloys classification, while AISI 301 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is AISI 301 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.6 to 10
7.4 to 46
Fatigue Strength, MPa 90 to 110
210 to 600
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 170 to 240
410 to 860
Tensile Strength: Ultimate (UTS), MPa 290 to 390
590 to 1460
Tensile Strength: Yield (Proof), MPa 270 to 360
230 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 160
840
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
16
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
13
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1190
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
99 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
130 to 2970
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 29 to 39
21 to 52
Strength to Weight: Bending, points 35 to 42
20 to 37
Thermal Diffusivity, mm2/s 69
4.2
Thermal Shock Resistance, points 13 to 18
12 to 31

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.040 to 0.14
16 to 18
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
70.7 to 78
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 2.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.4 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0