MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. AISI 431 Stainless Steel

6262 aluminum belongs to the aluminum alloys classification, while AISI 431 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is AISI 431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.6 to 10
15 to 17
Fatigue Strength, MPa 90 to 110
430 to 610
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 170 to 240
550 to 840
Tensile Strength: Ultimate (UTS), MPa 290 to 390
890 to 1380
Tensile Strength: Yield (Proof), MPa 270 to 360
710 to 1040

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 160
850
Melting Completion (Liquidus), °C 650
1510
Melting Onset (Solidus), °C 580
1450
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
26
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.0
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.2
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1190
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
140 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
1270 to 2770
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 29 to 39
32 to 50
Strength to Weight: Bending, points 35 to 42
27 to 36
Thermal Diffusivity, mm2/s 69
7.0
Thermal Shock Resistance, points 13 to 18
28 to 43

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0.040 to 0.14
15 to 17
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
78.2 to 83.8
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0
1.3 to 2.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0