MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. AWS E2594

6262 aluminum belongs to the aluminum alloys classification, while AWS E2594 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is AWS E2594.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 4.6 to 10
17
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
81
Tensile Strength: Ultimate (UTS), MPa 290 to 390
850

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
16
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
22
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.3
4.3
Embodied Energy, MJ/kg 150
60
Embodied Water, L/kg 1190
190

Common Calculations

Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 29 to 39
30
Strength to Weight: Bending, points 35 to 42
25
Thermal Diffusivity, mm2/s 69
4.3
Thermal Shock Resistance, points 13 to 18
21

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0.040 to 0.14
24 to 27
Copper (Cu), % 0.15 to 0.4
0 to 0.75
Iron (Fe), % 0 to 0.7
53.8 to 63.8
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0.5 to 2.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0
8.0 to 10.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.4 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0