MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. AWS E385

6262 aluminum belongs to the aluminum alloys classification, while AWS E385 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is AWS E385.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.6 to 10
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 290 to 390
580

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 580
1390
Specific Heat Capacity, J/kg-K 890
460
Thermal Conductivity, W/m-K 170
14
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 2.8
8.1
Embodied Carbon, kg CO2/kg material 8.3
5.8
Embodied Energy, MJ/kg 150
79
Embodied Water, L/kg 1190
200

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 29 to 39
20
Strength to Weight: Bending, points 35 to 42
19
Thermal Diffusivity, mm2/s 69
3.6
Thermal Shock Resistance, points 13 to 18
15

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.040 to 0.14
19.5 to 21.5
Copper (Cu), % 0.15 to 0.4
1.2 to 2.0
Iron (Fe), % 0 to 0.7
41.8 to 50.1
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
1.0 to 2.5
Molybdenum (Mo), % 0
4.2 to 5.2
Nickel (Ni), % 0
24 to 26
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.4 to 0.8
0 to 0.9
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0