MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. EN 1.4913 Stainless Steel

6262 aluminum belongs to the aluminum alloys classification, while EN 1.4913 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is EN 1.4913 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 4.6 to 10
14 to 22
Fatigue Strength, MPa 90 to 110
320 to 480
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 170 to 240
550 to 590
Tensile Strength: Ultimate (UTS), MPa 290 to 390
870 to 980
Tensile Strength: Yield (Proof), MPa 270 to 360
480 to 850

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 160
700
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
24
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.0
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.9
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1190
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
600 to 1860
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 29 to 39
31 to 35
Strength to Weight: Bending, points 35 to 42
26 to 28
Thermal Diffusivity, mm2/s 69
6.5
Thermal Shock Resistance, points 13 to 18
31 to 34

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0 to 0.020
Bismuth (Bi), % 0.4 to 0.7
0
Boron (B), % 0
0 to 0.0015
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0.040 to 0.14
10 to 11.5
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
84.5 to 88.3
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0.4 to 0.9
Molybdenum (Mo), % 0
0.5 to 0.8
Nickel (Ni), % 0
0.2 to 0.6
Niobium (Nb), % 0
0.25 to 0.55
Nitrogen (N), % 0
0.050 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.4 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0