MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. EN 1.5026 Steel

6262 aluminum belongs to the aluminum alloys classification, while EN 1.5026 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is EN 1.5026 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 290 to 390
660 to 1980

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 580
1390
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 170
47
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.9
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.3
1.5
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1190
46

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 29 to 39
24 to 71
Strength to Weight: Bending, points 35 to 42
22 to 45
Thermal Diffusivity, mm2/s 69
13
Thermal Shock Resistance, points 13 to 18
20 to 60

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0.52 to 0.6
Chromium (Cr), % 0.040 to 0.14
0
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
96.5 to 97.3
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.4 to 0.8
1.6 to 2.0
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0