MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. EN 2.4608 Nickel

6262 aluminum belongs to the aluminum alloys classification, while EN 2.4608 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is EN 2.4608 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 4.6 to 10
34
Fatigue Strength, MPa 90 to 110
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 170 to 240
410
Tensile Strength: Ultimate (UTS), MPa 290 to 390
620
Tensile Strength: Yield (Proof), MPa 270 to 360
270

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 160
1000
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 890
460
Thermal Conductivity, W/m-K 170
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 2.8
8.5
Embodied Carbon, kg CO2/kg material 8.3
8.4
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1190
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
170
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
23
Strength to Weight: Axial, points 29 to 39
20
Strength to Weight: Bending, points 35 to 42
19
Thermal Diffusivity, mm2/s 69
2.9
Thermal Shock Resistance, points 13 to 18
16

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0.040 to 0.14
24 to 26
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
11.4 to 23.8
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
44 to 47
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.4 to 0.8
0.7 to 1.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0