MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. EN AC-46000 Aluminum

Both 6262 aluminum and EN AC-46000 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is EN AC-46000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
73
Elongation at Break, % 4.6 to 10
1.0
Fatigue Strength, MPa 90 to 110
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Tensile Strength: Ultimate (UTS), MPa 290 to 390
270
Tensile Strength: Yield (Proof), MPa 270 to 360
160

Thermal Properties

Latent Heat of Fusion, J/g 400
530
Maximum Temperature: Mechanical, °C 160
180
Melting Completion (Liquidus), °C 650
620
Melting Onset (Solidus), °C 580
530
Specific Heat Capacity, J/kg-K 890
880
Thermal Conductivity, W/m-K 170
100
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
26
Electrical Conductivity: Equal Weight (Specific), % IACS 140
82

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.8
2.8
Embodied Carbon, kg CO2/kg material 8.3
7.6
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1190
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
49
Strength to Weight: Axial, points 29 to 39
26
Strength to Weight: Bending, points 35 to 42
33
Thermal Diffusivity, mm2/s 69
42
Thermal Shock Resistance, points 13 to 18
12

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
79.7 to 90
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0.040 to 0.14
0 to 0.15
Copper (Cu), % 0.15 to 0.4
2.0 to 4.0
Iron (Fe), % 0 to 0.7
0 to 1.3
Lead (Pb), % 0.4 to 0.7
0 to 0.35
Magnesium (Mg), % 0.8 to 1.2
0.050 to 0.55
Manganese (Mn), % 0 to 0.15
0 to 0.55
Nickel (Ni), % 0
0 to 0.55
Silicon (Si), % 0.4 to 0.8
8.0 to 11
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.15
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 1.2
Residuals, % 0
0 to 0.25