MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. CC331G Bronze

6262 aluminum belongs to the aluminum alloys classification, while CC331G bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is CC331G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 4.6 to 10
20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 290 to 390
620
Tensile Strength: Yield (Proof), MPa 270 to 360
240

Thermal Properties

Latent Heat of Fusion, J/g 400
230
Maximum Temperature: Mechanical, °C 160
220
Melting Completion (Liquidus), °C 650
1060
Melting Onset (Solidus), °C 580
1000
Specific Heat Capacity, J/kg-K 890
440
Thermal Conductivity, W/m-K 170
61
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 44
13
Electrical Conductivity: Equal Weight (Specific), % IACS 140
14

Otherwise Unclassified Properties

Base Metal Price, % relative 10
28
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 8.3
3.2
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1190
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
97
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
250
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 48
19
Strength to Weight: Axial, points 29 to 39
21
Strength to Weight: Bending, points 35 to 42
19
Thermal Diffusivity, mm2/s 69
17
Thermal Shock Resistance, points 13 to 18
22

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
8.5 to 10.5
Bismuth (Bi), % 0.4 to 0.7
0
Chromium (Cr), % 0.040 to 0.14
0
Copper (Cu), % 0.15 to 0.4
83 to 86.5
Iron (Fe), % 0 to 0.7
1.5 to 3.5
Lead (Pb), % 0.4 to 0.7
0 to 0.1
Magnesium (Mg), % 0.8 to 1.2
0 to 0.050
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0
0 to 1.5
Silicon (Si), % 0.4 to 0.8
0 to 0.2
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 0.5
Residuals, % 0 to 0.15
0