MakeItFrom.com
Menu (ESC)

6262 Aluminum vs. Grade CX2M Nickel

6262 aluminum belongs to the aluminum alloys classification, while grade CX2M nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6262 aluminum and the bottom bar is grade CX2M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
220
Elongation at Break, % 4.6 to 10
45
Fatigue Strength, MPa 90 to 110
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
84
Tensile Strength: Ultimate (UTS), MPa 290 to 390
550
Tensile Strength: Yield (Proof), MPa 270 to 360
310

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 160
990
Melting Completion (Liquidus), °C 650
1500
Melting Onset (Solidus), °C 580
1450
Specific Heat Capacity, J/kg-K 890
430
Thermal Conductivity, W/m-K 170
10
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
65
Density, g/cm3 2.8
8.7
Embodied Carbon, kg CO2/kg material 8.3
12
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1190
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 31
210
Resilience: Unit (Modulus of Resilience), kJ/m3 530 to 940
220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
23
Strength to Weight: Axial, points 29 to 39
18
Strength to Weight: Bending, points 35 to 42
17
Thermal Diffusivity, mm2/s 69
2.7
Thermal Shock Resistance, points 13 to 18
15

Alloy Composition

Aluminum (Al), % 94.7 to 97.8
0
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0.040 to 0.14
22 to 24
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
0 to 1.5
Lead (Pb), % 0.4 to 0.7
0
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Molybdenum (Mo), % 0
15 to 16.5
Nickel (Ni), % 0
56.4 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.4 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0